Digital Twins: Seeing Double with a Predictive Eye

An interview with Toni Manzano, Chief Scientific Officer and Co-Founder, Aizon
|
April 6, 2022

Digital twins have become a vital and strategic approach to streamline the manufacturing process of drugs and therapeutics. We’re pleased to share the thoughts of Toni Manzano, Chief Scientific Officer and Co-Founder of Aizon, who recently joined the Tetra Partner Network. 

How would you define a digital twin?

There are a multitude of definitions and use cases for a digital twin in pharma and biotech manufacturing. In the simplest terms, a digital twin provides an in silico model of the physical asset or process. Digital twins are employed in product and process development to facilitate agile development, technical transfer, and process improvement while reducing waste, positively impacting quality, and bringing a product to market faster.

How would you make this concept more tangible?

We can imagine a “smart” automobile, such as a Tesla, for example. While the car itself is continuously producing and transmitting data around energy consumption, performance, maintenance, and more, it is also capable of capturing the environmental and passenger context– driver behavior, road and weather conditions, driver preferences, etc. The car and the context are inextricably linked and the insights coupled from the outside in and inside out enable better management and ultimately, a better driving experience. This holistic capture of data, processes, things, and people (the so called, ‘Internet of Everything’) can be used to create a digital model that predicts and recommends outcomes based on changes within the car or context. We can think of this as a digital twin.

How do digital twins work in biopharma?

A digital twin for a biopharma process works in the same way. Take for example a bioreactor unit that is either standalone, part of a multi-unit process train, in process development, or active in commercial production. To create a digital twin with the goal of accelerating process development and optimization, all data from the equipment itself– raw materials, utilities, external context, and more, are required for the model to be meaningful. All this information must be integrated in the cloud in order to enable a thorough contextualization and close the essential feedback loop that is required to empower the model with continuous updates to adapt to the new scenarios in real-time.

This ‘feedback loop’ can only happen with powerful Artificial Intelligence (AI) due to the complexity of the data involved and the requirement to generate valuable and actionable insights. The result of this approach is a full and intelligent digital version of your bioreactor that is able to proactively monitor its operation, identify the relevant factors that impact the product quality, process safety, and throughput. And it doesn’t stop there. Because the digital twin knows “everything,” it is able to provide real-time predictions on every meaningful information and the impact cascaded by the changes in the process. The outcome is, actionable insights that enable proactive decisions to avoid deviations, reduce cost and material waste, improve performance and product quality, all while constantly maintaining safety and compliance.

As we are talking about pharma, GxP compliance throughout the lifecycle of the data, the AI models, and the digital twin application is absolutely critical. This generates complexities, especially when the actionable recommendations must be applied in real-time like in continuous manufacturing and Continued Process Verification (CPV).

What are the best practices for planning a digital twin strategy?

Digital Twin

Selecting the appropriate technology and defining the best approach to develop your digital twin is vital for a successful implementation. When planning your digital twin strategy, there are four best practices to follow: 

  • Ensure GxP-compliant digital compatibility so that you can take action on the insights. GxP compliance does not only pertain to a data lake or other central repository; it is also how your data, models, and applications are governed over their life cycle – ensure that GxP is at the core of the solution in its entirety (connect and we can share more).
  • Data acquisition cannot be limited to systems data; it must be holistic to include manual operations, external environment, raw materials, utilities, and every external data that is applicable.
  • The best and only way to understand and predict biosystems for transformative value is through the application of multivariate analyses using AI.
  • Consider the industrial scale-up of your digital twin strategy– ensure you are future-proofing for Continued Process Verification (CPV) and beyond (we can advise, design and empower your roadmap).

What are the benefits of partnering with TetraScience?

An open digital ecosystem is essential for digital twins and the free movement of data, regardless of its source. Partnering with TetraScience enables us to accelerate data liquidity. 

For more information about Aizon’s Digital Twin Solutions, register for this free webinar at Xtalks now available on demand:

Smart Manufacturing with Artificial Intelligence: A Digital Twin Strategy for Accelerated Innovation and Industrial Scale-up. Presenters are Dr. Toni Manzano, CSO and Co-Founder, Aizon, and Luiza Mukaeda, Industry Specialist, Aizon

Share this article

Previous post

There is no previous post
Back to all posts
June 27, 2022

Barrier Busting: Bringing ELN and LIMS Scientific Data Together

Read Blog
May 31, 2022

Committed to Curing Diabetes

Read Blog
May 23, 2022

New Frontiers: World’s First Community-Driven AI Store for Biology

Read Blog
May 18, 2022

Tetra Blasts Off at Boston’s Bio-IT World

Read Blog
May 9, 2022

Give Your in vivo Data the Attention it Deserves

Read Blog
May 2, 2022

Customizing Digital Lab Experiences With Ease

Read Blog
April 14, 2022

Sharing a Vision and Deep Customer Commitment

Read Blog
April 11, 2022

Escaping the Scientific Data Quagmire

Read Blog
April 1, 2022

Innovating with a HoloLens and Drones

Read Blog
April 6, 2022

Digital Twins: Seeing Double with a Predictive Eye

Read Blog
March 28, 2022

Automated Anomaly Detection and Correction

Read Blog
March 30, 2022

Making Labs More Efficient

Read Blog
March 4, 2022

Introducing Tetra Data Platform v3.2

Read Blog
March 2, 2022

Are you prepared to utilize ML/AI and Data Visualization?

Read Blog
February 22, 2022

SLAS 2022: The Industry’s “Hyped” for Accessible and Actionable Scientific Data

Read Blog
February 21, 2022

BIOVIA partners with TetraScience

Read Blog
February 16, 2022

Tetra Partner Network: An Interview with Klemen Zupancic, CEO, SciNote

Read Blog
February 4, 2022

Closing the Data Gap in Cancer Research

Read Blog
January 27, 2022

Waters & The Tetra Partner Network: Making Data Science Possible

Read Blog
December 16, 2021

Announcing Acquisition of Tetra Lab Monitoring Business by Elemental Machines

Read Blog
November 29, 2021

Move From Fractal to Flywheel with The Tetra Partner Network

Read Blog
March 26, 2021

How an IDS Complements Raw Experimental R&D Data in the Digital Lab

Read Blog
July 30, 2021

What is an R&D Data Cloud? (And Why Should You Care?)

Read Blog
March 26, 2021

What is a True Data Integration, Anyway?

Read Blog
June 1, 2020

Data Science Use Cases for the Digital Lab: Novel Analyses with Waters Empower CDS Data

Read Blog
April 20, 2022

Unlock the Power of Your ELN and LIMS

Read Blog
July 23, 2020

The Science Behind Trash Data

Read Blog
August 20, 2021

The 4 Keys to Unlock the Lab of the Future

Read Blog
September 29, 2021

TetraScience Achieves SOC 2 Type 2 Validation, Advances R&D Data Cloud GxP Compliance Capabilities

Read Blog
April 20, 2020

Round-up of Semantic Web thought leadership articles

Read Blog
May 11, 2021

R&D Data Cloud: Moving Your Digital Lab Beyond SDMS

Read Blog
September 10, 2021

Principles of Deep Learning Theory

Read Blog
July 8, 2020

Powering Bioprocessing 4.0 for Therapeutic Development

Read Blog
March 30, 2022

Why Biopharma Needs an End-to-End, Purpose-Built Platform for Scientific Data — Part 2

Read Blog
August 19, 2021

Part 2: How TetraScience Approaches the Challenge of Scaling True Scientific Data Integrations

Read Blog
March 23, 2022

Why Biopharma Needs an End-to-End, Purpose-Built Platform for Scientific Data — Part 1

Read Blog
January 18, 2021

New Matter: Inside the Minds of SLAS Scientists Podcast

Read Blog
June 29, 2020

Enabling Compliance in GxP Labs

Read Blog
May 14, 2020

LRIG-New England: Lunchtime Virtual Rapid Fire Event - May 26, 2020

Read Blog
June 10, 2020

Remote Lab Scheduling is No Longer Optional, it is a Requirement

Read Blog
August 2, 2020

Incident Reporting for GxP Compliance

Read Blog
October 15, 2020

Protein Purification with Cytiva UNICORN: Enhanced Analytics through Harmonization and Integration

Read Blog
July 29, 2020

Cloud-based Data Management with Lab Automation: HighRes Biosolutions Cellario + TetraScience

Read Blog
August 20, 2020

Understanding Why Freezer Temperatures May Not Be Uniform

Read Blog
July 14, 2021

Find Experimental Data Faster with Google-Like Search in Tetra Data Platform 3.1 Release

Read Blog
July 22, 2021

Experimental Data in Life Sciences R&D — It’s How Many Copies of Jaws?!

Read Blog
April 26, 2020

The Digital Lab Needs an Intermediate Data Schema (IDS): a First Principle Analysis

Read Blog
April 6, 2020

TetraScience ADF Converter -- Delivering on the Promise of Allotrope and a Startup’s Journey

Read Blog
August 6, 2020

"Data Plumbing" for the Digital Lab

Read Blog
June 8, 2020

Data Automation for High-Throughput Screening with Dotmatics, Tecan, and PerkinElmer Envision

Read Blog
May 15, 2020

Applying Data Automation and Standards to Cell Counter Files

Read Blog
June 11, 2020

AWS Healthcare & Life Sciences Web Day | Virtual Industry Event

Read Blog
February 12, 2021

AWS Executive Conversations: Evolving R&D

Read Blog
April 15, 2021

Announcing Our Series B: The What, When, Why, Who, and Where

Read Blog
April 15, 2021

Announcing our Series B: The DNA Markers of Category Kings and Queens

Read Blog
April 15, 2021

Announcing our Series B: Tetra 1.0 and 2.0 | The Noise and the Signal

Read Blog
March 29, 2020

Allotrope Leaf Node Model — a Balance between Practical Solution and Semantics Compatibility

Read Blog
March 13, 2020

Choose the right alert set points for your freezers, refrigerators, and incubators

Read Blog
August 27, 2020

99 Problems, but an SDMS Ain't One

Read Blog